MATHEMATICS

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

TARGET IIT JEE AILEE
& GOMPATETIVE EXAM FOR XIII (PORS)

CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

CONTENTS				
Key Concept - 1				
Exercise - 1				
Exercise - II				
Exercise - III				
Exercise - IV				
Exercise - V				
Exercise - VI				

CONTINUITY AND DIFFERENTIAB

$$Lim f(a-h) = Lim f(a+h) = f(a)$$

$$h \to 0$$
 $h \to 0$

Is $\phi(x)$ continuous at x = 1, when 1.

$$\phi(x) = x+3,$$

$$0 \le x \le 1$$

$$=4-x$$

$$x > 1$$
?

Prove that the following function is discontinuous at $x = \frac{1}{2}$? 2.

$$f(x) = \frac{1}{2} - x,$$
 $0 < x < \frac{1}{2}$

$$0 < x < \frac{1}{2}$$

$$= \frac{1}{2}$$

$$X = \frac{1}{2}$$

$$= 3/2 - x$$

$$= 3/2 - x$$
, $\frac{1}{2} < x < 1$?

Examin the contunuity of the following fraction x = 0. 3.

$$f(x) = \frac{\cos ax - \cos bx}{X^2}, x \neq 0$$

$$=\frac{b^2-a^2}{q}, x=0$$

Is f(x) continuous at x = 0, if 4.

$$f(x) = x \sin \frac{1}{x}$$

$$x \neq 0$$

$$= 0,$$

$$\mathbf{x} = 0$$

5. Examine the contunuity of the following function f(x) in the closed interval $[0, \pi]$.

$$f(x) = \operatorname{Sin} x + \operatorname{Cos} x, \, 0 \le x \, \pi/3$$

$$= 2 \sin 2x, \frac{\pi}{3} < x < 2\pi/3$$

$$= \tan x, 2\pi/3 \le x \le \pi$$

If $f(x) = x+5, x \le 1$ 6.

$$= x - 5, x > 1$$

= x - 5, x > 1, then Examin the countinuity of f(x).

Find the value of K so that the function 7.

$$f(x) = Kx + 1, x \le 5$$

$$= 3x - 5$$
 $x >$

= 3x - 5, x > 5 is countinous at x = 5.

8. Find the value of K, So that the function is contunous at $x = \pi/2$

$$f(x) = \frac{K \operatorname{Cos} x}{\pi - 2x}, \qquad x \le \pi/2$$

9. Examine the contunuity of the following function f(x), at x = 0?

$$f(x) = \frac{|x|}{x}, x \neq 0$$
$$= 0, x = 0$$

- 10. The function $f(x) = \frac{\log(1+ax) \log(1-bx)}{x}$, x = 0 is not defined at x = 0, Find the value of f(0). So that f(x) is continuous at x = 0.
- 11. If $f(x) = \frac{\tan (\pi/4-x)}{\cot 2x}$, $x \neq \pi/4$ then find $f(\pi/4)$ so that f(x) is continous at $x = \pi/4$.

DIFFERENTIATION

Thins to remember

1. Defferntial co-efficient of standard function.

(i)
$$\frac{dx^{n}}{dx} = nx^{x-1}$$

(ii)
$$\frac{d(c)}{dx} = 0$$
, where C = Constant

(iii)
$$\frac{d \sin x}{dx} = \cos x$$

(iv)
$$\frac{d \cot x}{dx} = -C \operatorname{osec}^2 x$$

(v)
$$\frac{d \cos x}{dx} = -\sin x$$

(vi)
$$\frac{d \csc x}{dx} = -\text{Cosecx.Cotx}$$

(vii)
$$\frac{d \tan x}{dx} = Sec^2x$$

(viii)
$$\frac{d \operatorname{Sec} x}{dx} = \operatorname{Secx.tanx}$$

(ix)
$$\frac{de^x}{dx} = e^x$$

(x)
$$\frac{d \log x}{dx} = \frac{1}{x}$$

(xi)
$$\frac{d\sqrt{x}}{dx} = \frac{1}{2\sqrt{x}}$$

2. (i)
$$\frac{d \sin^{-1} x}{dx} = \frac{1}{\sqrt{1-x^2}}$$

(ii)
$$\frac{d \cot^{-1} x}{dx} = \frac{1}{\sqrt{1-x^2}}$$

(iii)
$$\frac{d \tan^{-1} x}{dx} = \frac{1}{1+x^2}$$

(iv)
$$\frac{d \cot^{1} x}{dx} = \frac{-1}{1+x^{2}}$$

$$(v) \qquad \frac{\mathrm{d} \, \sec^{-1} \, x}{\mathrm{d} x} = \frac{1}{x \sqrt{x^2 - 1}}$$

(v)
$$\frac{d \sec^{-1} x}{dx} = \frac{1}{x\sqrt{x^2-1}}$$
 (vi) $\frac{d \csc^{-1} x}{dx} = \frac{-1}{x\sqrt{x^2-1}}$

(vii)
$$\frac{da^x}{dx} = a^x \cdot loge^a$$
 (viii) $\frac{dx}{dx} = 1$

(viii)
$$\frac{dx}{dx} = 1$$

3. (i) If
$$y = u.v$$
 then $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

(ii) If
$$y = u+v$$
 then $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$

(iii) If
$$y = \frac{u}{v}$$
 then $\frac{dy}{dx} = v \frac{du}{dx} - u \frac{dv}{dx}$

- Geometrical uses of $\frac{dy}{dx}$. 4.
 - The change Rate of $x = \frac{dx}{dt}$ (i)
 - (ii) $\frac{dy}{dx} = \frac{\text{Change rate of y}}{\text{Change Rate of x}}$
 - (iii) Velocity $v = \frac{ds}{dt}$
 - (iv) Acceleration $f = \frac{dv}{dt} = \frac{d^2s}{dt^2}$ where s = displacement
 - $\delta y = \frac{dy}{dx}$. δx where $\delta y = y$ about change $\delta x = x$, in about change.
- Any curve y = f(x), for $\frac{dy}{dx} = \tan \psi$, where $\psi = Point$ of curve (x,y) at (i) 5 tangent the slope of x-axis.
 - The Equation of tangent at point (α, β) the curve y = f(x)(ii)

$$y - \beta = \left(\frac{dy}{dx}\right)_{\alpha,\beta} \cdot (x - \alpha)$$

Equation of Normal at Point (α, β) the curve y = f(x)(iii)

$$(y-\beta) \left(\frac{dy}{dx}\right)_{\alpha,\beta} + (x - \alpha) = 0$$

(iv) If the curve $y = f_1(x)$, $y = f_2(x)$ and their between angle be ϕ then

$$tan\varphi = \frac{\pm \left(\frac{df_2}{dx}\right)_{\alpha,\beta} - \left(\frac{df_1}{dx}\right)_{\alpha,\beta}}{1 + \left(\frac{df_1}{dx}\right) \cdot \left(\frac{(df_1)}{dx}\right)_{\alpha,\beta}}$$

Where (α, β) are cut - point.

- 6. Introduct of Maximum and Minimum Value.
 - (i) For Max value $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$
 - (ii) For min value $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$
- 7. (a) Theorem of Rolle's :-
 - (i) f(x) is continuous at every point of the closed interval $a \le x \le b$.
 - (ii) f(x) exists at every point of the open interval a < x < b and
 - (iii) f(a) = f(b)Then there is at least one value of c of at which f'(c) = 0, where a < c < b.
 - (b) Lagrange's mean value theorem:-If the function f(x) be defined in such a way that
 - (i) f(x) is continuous at every point of the closed interval $a \le x \le b$.
 - (ii) f'(x) exists at every point of the open interval a < x < b. then there is a value c of x for which,

$$\frac{f(b) - f(a)}{b-a} = f'(c) \text{ where } a < c < b.$$

Extra Formula

(1)
$$(a+x)^n = 1 + nx + \frac{n(n-1)}{3!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots \infty$$

(2)
$$\log (1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots \infty$$

(3)
$$e^x = 1 + x + \frac{x^2}{<2} + \frac{x^3}{<3} + \dots$$

(4) (i) Area of circle = πr^2 , (ii) Perimeter of circle = $2\pi r$

- (5) (i) Volume of Sphere = $4/3\pi r^3$ and their surface = $4\pi r^2$.
- (6) Volume of cylinder = $\pi r^2 h$ and curve surface = $2\pi rh$.
- (7) Volume of cone = $1/3 \pi r^2 h$ and curve surface = $\pi r l$

EXERCISE - 2

Differentiability:-

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

1. Examine the continuity and differentiability of the function f defined by

$$f(x) = 2x + 3,$$
 $3 > x < -2$
= $x + 1,$ $-2 \le x < 0$
= $x + 2,$ $0 < x \le 1$

2. If
$$f(x) = \frac{x-2}{x^2-3x+2}$$
, When $x \ne 2$

$$= 1$$
, when $x = 2$

then find the value of f(2).

3. Find the value of a and b so that

$$f(x) = x^2 + 3x + a, x \le 1$$

= $bx + 2, x > 1$ is differentiable at $x = 1$.

EXERCISE - 3

1. Find $\frac{dy}{dx}$

(i)
$$y = \cos \sqrt{\sin \sqrt{x}}$$

(ii) Sin
$$\sqrt{x^2+ax+1}$$

(iii)
$$y = \log (x + \sqrt{x^2 + a^2})$$

(iv)
$$y = Sin \{Cos(tan\sqrt{x})\}\$$

(v)
$$y = e^{\sqrt{x}}$$

(vi)
$$y = e^{x^2}$$

(vii)
$$y = \log \sin x$$

(viii)
$$y = \log(Sec x + tan x)$$

(ix)
$$y = \log \tan (\pi/4 + x/2)$$

2. If
$$x^m y^n = (x+y)^{m+n}$$
 then find $\frac{dy}{dx} = ?$

3. If
$$y = x \sin(a+y)$$
 then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$.

4. If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
 then prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$

5. If
$$y = \sqrt{x + \sqrt{x + \sqrt{x + \dots + t_0}}}$$
 then find $\frac{dy}{dx}$?

6. Prove that
$$\frac{d}{dx} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right] = \sqrt{a^2 - x^2}$$

7. Find
$$\frac{dy}{dx} = ? \text{ If } y = \tan^{-1}(\sqrt{1+x^2} + x)?$$

8. If
$$9x^2 + 2hxy + by^2 + 2fy + c = 0$$
, Find $\frac{dy}{dx} = ?$

9. If
$$(x + y)^{m+n} = x^m y^n$$
. Show that $\frac{dy}{dx} = \frac{y}{x}$

10. If
$$y = x + \frac{1}{x}$$
 then prove that $x \frac{dy}{dx} + y = 2x$.

11. If
$$y = \log_7 \cdot \log_7 x$$
 Find $\frac{dy}{dx}$?

12. If
$$x^y = y^x$$
 then find $\frac{dy}{dx}$?

13.
$$y = x^{x}$$
 then find $\frac{dy}{dx}$?

14.
$$y = e^{x+e^{x+---to \infty}}$$
 then prove that $\frac{dy}{dx} = \frac{y}{1-y}$

15. If
$$y = (\sin x)^x + (\cos x)^{\tan x}$$
 then find $\frac{dy}{dx} = ?$

16. If
$$y = (\log x)^x + x^{\log x}$$
 then find $\frac{dy}{dx} = ?$

- 17. If $(\cos x)^y = (\cos y)^x$ then find $\frac{dy}{dx}$?
- 18. If $Y = (\sin x)^{\cos x} + (\cos x)^{\sin x}$ then find $\frac{dy}{dx}$?

Exercise:-4

- 1. If $x = \log t + \sin t$, $y + e^{t} + \text{Cost then } \frac{dy}{dx} = ?$
- 2. If $x = a \sin 2t (1 + \cos 2t)$ and $y = b \cos 2t (1 \cos 2t)$ then show that $\left(\frac{dy}{dx}\right)_{t=\pi/4} = \frac{b}{a}$
- 3. If $y = \cos^2\theta$, $x = b \sin^2\theta$, then prove that dy/dx + a/b = 0
- 4. Find dy/dx, at $t = \pi/3$ when $x = a \cdot (\cos t + t \sin t)$ and $y = a \cdot (\sin t t \cos t)$
- 5. If $x=3at/1+t^3$, $y=3at^2/1+t^3$, find dy/dx when $t=\frac{1}{2}$
- 6. If $xy = e^{x-y} + \text{then find dy/dx} = ?$

Exercise - 5

- 1. $y = Ae^{mx} + Be^{nx}$, show that $d^2y/dx^2 (m+n) dy/dx + mny = 0$
- 2. If $y = \sin^{-1}x$, then prove that $(1-x^2) d^2y/dx^2 x dy/dx = 0$
- Find the second order derovatives.
 - (a) $\log(\log x)$
- (b) e^x Sin 5x
- (c) $x^3 \log x$
- 4. If $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta \theta\cos\theta)$, prove that $d^2y/dx^2 = \sec^3\theta/a\theta$
- 5. If $y = 3\cos(\log x) + 4\sin(\log x)$, prove that $x^2y_2 + xy_1 + y = 0$.
- 6. If $y = 3e^{2x} + 2e^{3x}$, prove that $d^2y/dx^2-5 dy/dx + 6y=0$.

- 7. If $y = a \cos(\log x) + b \sin(\log x)$, then prove that $x^2y_2 + xy_1 + y = 0$.
- 8. If $y = \log (x/a+bx)^x$ then prove that $x^3 d^2y/dx^2 = (x dy/dx y)^2$.
- 9 (a) Find the equation of Tangent by geome trical method?
 - (b) Find the equation of normal by Geome trical method?
- 10. (a) At which point on the curve $\sqrt{x} + \sqrt{4} = 4$, the tangent is equally inclined with the axes?
 - (b) Prove that the tangent to the curve $y^2 = 2x$ at the points where $x = \frac{1}{2}$ are at right angles.
- (c) What is the condition for the curves $ax^2+by^2=1$ and $a_1x^2+b_1y^2=1$ to cut thogonally?
- 11. Find the approximate volume of the metal of a hollow spherical shell whose thickness is 0.01 mec. and internal radius is 5 inch.
- 12. Find the approximate value of $\cos 31^{\circ}$ and $\cos 29^{\circ}$. If $1^{\circ} = 0.017$ radian.
- 13. Find the approximate $(80)^{1/4}$
- Prove that $f(x) = x^3 3x^2 + 4x + 3$ is an incresing function at all points of its domain.
- 15. Prove that $\sin\theta$ (1+cos θ) has maximum value of $\theta = \pi/3$
- Prove that the semi-vertical angle of a cone with given slant height, whose volume is maximum is $\tan^{-1}\sqrt{2}$
- 17. Prove the the rectangle of greatest area incribed in a circle is a square.
- 18. If $\theta+\phi=\alpha$ which is constant, prove that $\sin\theta$. $\sin\phi$ has maximum value when $\theta=\phi$
- 19. Prove that the volume of cone of maximum value incribed in a sphere of given radius, is 8/27 tiems the volume of the sphere.
- 20. Verify Rolle's theorem for the function $f(x) = 2x^3 + x^2 4x 2$ when $-\frac{1}{2} \le x \le \sqrt{2}$.
- verify mean value theorem for the function f(x) = (x-1)(x-2)(x-3), when $0 \le x \le 4$.

Prove that $\log_e (1+x) < x$, when x > 0. 22.

Exercise - 6

- The function $f(x) = \frac{\log(1+ax) \log(1-bx)}{x}$ is undefined at x = 0, the value which 1. should be assigned to f at x=0, so that it is continuous at x=0 is
 - (a) a-b
- (b) $\frac{a+b}{2}$
- (c) a+b
- $(d) \log_e (a+b)$
- The value of k which makes $(x) = x \sin \frac{1}{x}, x \neq 0$ 2.

$$= k, x = 0$$

continuous at x = 0 is

- (a) 8
- (b) 1
- (c) -1
- (d) None of these
- The value of f(0), so that the function $f(x) = \frac{\sqrt{1+x} \sqrt{1+x}}{x}$ is continuous at x=0, is 3.
 - (a) 2
- (b) 1/4
- (c) 1/6
- (d) 1/3

- If $x \sqrt{1+y} + y \sqrt{1+x} = 0$ then $\frac{dy}{dx} =$
- (a) $\frac{y}{y+1}$ (b) $\frac{y}{y-1}$ (c) $\frac{y}{1-y}$
- (d) None of these

- 5. If $y = \log \{\log(\log x)\}\$ then $\frac{dy}{dx} =$

 - (a) $\frac{1}{\log(\log x)}$ (b) $\frac{1}{x\log x \cdot \log(\log x)}$ (c) $\frac{1}{x\log(\log x)}$
- (d) None of these

- 6. If $X^x = e^{x-y}$ then $\frac{dy}{dx} =$
 - (a) $\frac{\log x}{(1+\log x)^2}$ (b) Non defined (c) $\frac{1+x}{1+\log x}$ (d) $\frac{1-\log x}{1+\log x}$

				By : Dir. Fi	
7	If $y = e^{3\log x}m$ then $\frac{d}{dx}$				
	(a) $3x^2$	(b) 2logx	(c) $\frac{3y}{x}$	(d) 3xy	
8.	The derivative of si	$n^{-1} \left(\frac{2x}{1+x^2} \right)$ w.r.t. \sin^{-1}	$\left(\frac{1-x^2}{1+x^2}\right)$ is		
	(a) -1	(b) 1	(c) 2	(d) ½	
9.	$\frac{d}{dx} \left[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \right] \text{ equals -}$				
	(a) Secx	(b) Cosec x	(c) Cosec x/2	(d) Sec $^{\times}/_{2}$	
10.	Let f be differentiable for all x. If $f(1) = -2$ and $f(x) > 2$ for $x \in [1,6]$, then				
	(a) $f(6) > 8$	(b) $f(6) < 8$	(c) $f(6) < 5$	(d) $f(6) = 5$	
11.	The rate of change of area of a circle with respect to its radius r at $r = 6$ cm. i				
	(a) 12π	(b) 11π	(c) 10 π	(d) 8π	
12.	The interval on which the function $f(x) = 2x^2 + 9x^2 + 12x - 1$ is decreasing is				
	(a) [-1, ∞]	(b) [-2, -1]	(c) $[-\infty, -2]$	(d)[-1,1]	
13.	The angle between curves $y^2 = x$ and $x^2 = x$ and $x^2 = y$ at (1,1) is:				
	(a) $\tan^{-1} 4/3$	(b) tan-1 3/4	(c) 90°	(d) 45°	

If x+y = k is normal to $y^2 = 12x$ then k is -14.

(a) 3

(b) 9

(c) -9

(d) -3

If the normal to the curve y = f(x) at the point (3, 4) makes an angle $3\pi/4$ with 15. the positive x-axis the f'(3) =

(a) -1

(b) -3/4

(c) 4/3

(d) 1
